Issue 40, 2021

Boosting purely organic room-temperature phosphorescence performance through a host–guest strategy

Abstract

The host–guest doping system has aroused great attention due to its promising advantage in stimulating bright and persistent room-temperature phosphorescence (RTP). Currently, exploration of the explicit structure–property relationship of bicomponent systems has encountered obstacles. In this work, two sets of heterocyclic isomers showing promising RTP emissions in the solid state were designed and synthesized. By encapsulating these phosphors into a robust phosphorus-containing host, several host–guest cocrystalline systems were further developed, achieving highly efficient RTP performance with a phosphorescence quantum efficiency (ϕP) of ∼26% and lifetime (τP) of ∼32 ms. Detailed photophysical characterization and molecular dynamics (MD) simulation were conducted to reveal the structure–property relationships in such bicomponent systems. It was verified that other than restricting the molecular configuration, the host matrix could also dilute the guest to avoid concentration quenching and provide an external heavy atom effect for the population of triplet excitons, thus boosting the RTP performance of the guest.

Graphical abstract: Boosting purely organic room-temperature phosphorescence performance through a host–guest strategy

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Jun 2021
Accepted
19 Sep 2021
First published
20 Sep 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 13580-13587

Boosting purely organic room-temperature phosphorescence performance through a host–guest strategy

M. Li, X. Cai, Z. Chen, K. Liu, W. Qiu, W. Xie, L. Wang and S. Su, Chem. Sci., 2021, 12, 13580 DOI: 10.1039/D1SC03420K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements