Issue 38, 2021

Nitride protonation and NH3 binding versus N–H bond cleavage in uranium nitrides

Abstract

The conversion of metal nitrides to NH3 is an essential step in dinitrogen fixation, but there is limited knowledge of the reactivity of nitrides with protons (H+). Herein, we report comparative studies for the reactions of H+ and NH3 with uranium nitrides, containing different types of ancillary ligands. We show that the differences in ancillary ligands, leads to dramatically different reactivity. The nitride group, in nitride-bridged cationic and anionic diuranium(IV) complexes supported by –N(SiMe3)2 ligands, is resistant toward protonation by weak acids, while stronger acids result in ligand loss by protonolysis. Moreover, the basic –N(SiMe3)2 ligands promote the N–H heterolytic bond cleavage of NH3, yielding a “naked” diuranium complex containing three bridging ligands, a nitride (N3−) and two NH2 ligands. Conversely, in the nitride-bridged diuranium(IV) complex supported by –OSi(OtBu)3 ligands, the nitride group is easily protonated to afford NH3, which binds the U(IV) ion strongly, resulting in a mononuclear U–NH3 complex, where NH3 can be displaced by addition of strong acids. Furthermore, the U–OSi(OtBu)3 bonds were found to be stable, even in the presence of stronger acids, such as NH4BPh4, therefore indicating that –OSi(OtBu)3 supporting ligands are well suited to be used when acidic conditions are required, such as in the H+/e mediated catalytic conversion of N2 to NH3.

Graphical abstract: Nitride protonation and NH3 binding versus N–H bond cleavage in uranium nitrides

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Jul 2021
Accepted
13 Aug 2021
First published
18 Aug 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 12610-12618

Nitride protonation and NH3 binding versus N–H bond cleavage in uranium nitrides

M. Keener, R. Scopelliti and M. Mazzanti, Chem. Sci., 2021, 12, 12610 DOI: 10.1039/D1SC03957A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements