Issue 2, 2021

Unraveling topology-induced shape transformations in dendrimersomes

Abstract

The vital functions of cell membranes require their ability to quickly change shape to perform complex tasks such as motion, division, endocytosis, and apoptosis. Membrane curvature in cells is modulated by very complex processes such as changes in lipid composition, the oligomerization of curvature-scaffolding proteins, and the reversible insertion of protein regions that act like wedges in the membrane. But, could much simpler mechanisms support membrane shape transformation? In this work, we demonstrate how the change of amphiphile topology in the bilayer can drive shape transformations of cell membrane models. To tackle this, we have designed and synthesized new types of amphiphiles—Janus dendrimers—that self-assemble into uni-, multilamellar, or smectic-ordered vesicles, named dendrimersomes. We synthesized Janus dendrimers containing a photo-labile bond that upon UV-Vis irradiation cleavage lose a part of the hydrophilic dendron. This leads to a change from a cylindrically to a wedge-shaped amphiphile. The high mobility of these dendrimers allows for the concentration of the wedge-shaped amphiphiles and the generation of transmembrane asymmetries. The concentration of the wedges and their rate of segregation allowed control of the budding and generation of structures such as tubules and high genus vesicles.

Graphical abstract: Unraveling topology-induced shape transformations in dendrimersomes

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2020
Accepted
05 Aug 2020
First published
05 Aug 2020

Soft Matter, 2021,17, 254-267

Author version available

Unraveling topology-induced shape transformations in dendrimersomes

N. Yu. Kostina, A. M. Wagner, T. Haraszti, K. Rahimi, Q. Xiao, M. L. Klein, V. Percec and C. Rodriguez-Emmenegger, Soft Matter, 2021, 17, 254 DOI: 10.1039/D0SM01097A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements