Issue 28, 2021

Thermodynamic stability versus kinetic accessibility: Pareto fronts for programmable self-assembly

Abstract

A challenge in designing self-assembling building blocks is to ensure the target state is both thermodynamically stable and kinetically accessible. These two objectives are known to be typically in competition, but it is not known how to simultaneously optimize them. We consider this problem through the lens of multi-objective optimization theory: we develop a genetic algorithm to compute the Pareto fronts characterizing the tradeoff between equilibrium probability and folding rate, for a model system of small polymers of colloids with tunable short-ranged interaction energies. We use a coarse-grained model for the particles' dynamics that allows us to efficiently search over parameters, for systems small enough to be enumerated. For most target states there is a tradeoff when the number of types of particles is small, with medium-weak bonds favouring fast folding, and strong bonds favouring high equilibrium probability. The tradeoff disappears when the number of particle types reaches a value m*, that is usually much less than the total number of particles. This general approach of computing Pareto fronts allows one to identify the minimum number of design parameters to avoid a thermodynamic–kinetic tradeoff. However, we argue, by contrasting our coarse-grained model's predictions with those of Brownian dynamics simulations, that particles with short-ranged isotropic interactions should generically have a tradeoff, and avoiding it in larger systems will require orientation-dependent interactions.

Graphical abstract: Thermodynamic stability versus kinetic accessibility: Pareto fronts for programmable self-assembly

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2021
Accepted
28 Jun 2021
First published
05 Jul 2021

Soft Matter, 2021,17, 6797-6807

Author version available

Thermodynamic stability versus kinetic accessibility: Pareto fronts for programmable self-assembly

A. Trubiano and M. Holmes-Cerfon, Soft Matter, 2021, 17, 6797 DOI: 10.1039/D1SM00681A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements