Issue 48, 2021

Instabilities in freely expanding sheets of associating viscoelastic fluids

Abstract

We use the impact of drops on a small solid target as a tool to investigate the behavior of viscoelastic fluids under extreme deformation rates. We study two classes of transient networks: semidilute solutions of supramolecular polymers and suspensions of spherical oil droplets reversibly linked by polymers. The two types of samples display very similar linear viscoelastic properties, which can be described with a Maxwell fluid model, but contrasting nonlinear properties due to different network structures. Upon impact, the weakly viscoelastic samples exhibit a behavior qualitatively similar to that of Newtonian fluids: a smooth and regular sheet forms, expands, and then retracts. By contrast, for highly viscoelastic fluids, the thickness of the sheet is found to be very irregular, leading to instabilities and eventually to the formation of holes. We find that the rheological properties of the material rule the onset of instabilities. We first provide a simple image analysis of the expanding sheets to determine the onset of instabilities. We then demonstrate that the Deborah number related to the shortest relaxation time associated with the sample structure following a high shear is the relevant parameter that controls the heterogeneities in the thickness of the sheet, eventually leading to the formation of holes. When the sheet tears-up, data suggest by contrast that the opening dynamics depends also on the expansion rate of the sheet.

Graphical abstract: Instabilities in freely expanding sheets of associating viscoelastic fluids

Article information

Article type
Paper
Submitted
22 Jul 2021
Accepted
10 Nov 2021
First published
11 Nov 2021

Soft Matter, 2021,17, 10935-10945

Instabilities in freely expanding sheets of associating viscoelastic fluids

S. Arora, A. Louhichi, D. Vlassopoulos, C. Ligoure and L. Ramos, Soft Matter, 2021, 17, 10935 DOI: 10.1039/D1SM01075A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements