Shape-programmable magneto-active elastomer composites for curve and biomimetic behavior imitation†
Abstract
A programming methodology, which can be applied to soft-magnetic-material-based magneto-active elastomers (MAEs), to catch the predefined specific objective curves is proposed in this study. The objective curves have been equally separated into a couple of segments, which will be filled by the designed MAE elements. Furthermore, the designed MAE segments with different chain angles, in which the deformation orientation of each element under applied homogeneous magnetic fields has been investigated based on the designed experimental setup, are arrayed based on the proposed programming methodology to constitute the MAE composite to catch the orientation of the objective curve. The experimental results show that based on the proposed programming methodology, the MAE composites can describe different curves, which include harmonic, tangential and arc tangential functions under applied homogeneous magnetic fields with good agreement. Furthermore, on the basis of the proposed programming methodology, the MAE composites are utilized to mimic the typical biomimetic behavior (the peeking-up behavior of snakes and the flapping behavior of birds) with smooth curvature properties, in which the dynamic procedures present continuous curves.