Issue 47, 2021

A continuum membrane model can predict curvature sensing by helix insertion

Abstract

Protein domains, such as ENTH (epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain amphipathic helices that drive preferential binding to curved membranes. However, predicting how the physical parameters of these domains control this ‘curvature sensing’ behavior is challenging due to the local membrane deformations generated by the nanoscopic helix on the surface of a large sphere. We here use a deformable continuum model that accounts for the physical properties of the membrane and the helix insertion to predict curvature sensing behavior, with direct validation against multiple experimental datasets. We show that the insertion can be modeled as a local change to the membrane's spontaneous curvature, cins0, producing excellent agreement with the energetics extracted from experiments on ENTH binding to vesicles and cylinders, and of ArfGAP helices to vesicles. For small vesicles with high curvature, the insertion lowers the membrane energy by relieving strain on a membrane that is far from its preferred curvature of zero. For larger vesicles, however, the insertion has the inverse effect, de-stabilizing the membrane by introducing more strain. We formulate here an empirical expression that accurately captures numerically calculated membrane energies as a function of both basic membrane properties (bending modulus κ and radius R) as well as stresses applied by the inserted helix (cins0 and area Ains). We therefore predict how these physical parameters will alter the energetics of helix binding to curved vesicles, which is an essential step in understanding their localization dynamics during membrane remodeling processes.

Graphical abstract: A continuum membrane model can predict curvature sensing by helix insertion

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2021
Accepted
11 Nov 2021
First published
12 Nov 2021

Soft Matter, 2021,17, 10649-10663

Author version available

A continuum membrane model can predict curvature sensing by helix insertion

Y. Fu, W. F. Zeno, J. C. Stachowiak and M. E. Johnson, Soft Matter, 2021, 17, 10649 DOI: 10.1039/D1SM01333E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements