Issue 48, 2021

Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor

Abstract

Gel electrolytes have aroused extensive interest for diverse flexible electronics due to their high ionic conductivity and inherent stretchability. However, gel electrolytes still face challenges in terms of mechanical properties, fatigue resistance, and environmental adaptation, which severely limit the practical application of gel-based electronics. In this paper, we have synthesized a novel polymerizable ionic liquid [SBMA][AA] by mixing zwitterionic sulfobetaine methacrylate with acrylic acid. Then a dually cross-linked single network poly(ionic liquid)/ionic liquid (DCSN PIL/IL) ionogel was prepared by a simple one-step photopolymerization of the [SBMA][AA] in another IL 1-ethyl-3-methylimidazolium dicyanoamide ([EmIm][DCA]). The synergistic effect between covalent crosslinking and dynamic physical crosslinking points endows the ionogel with good mechanical properties as well as outstanding fatigue resistance. Gratifyingly, the entrapment of [EmIm][DCA] in the ionogel matrix yields excellent environmental adaptability and high ionic conductivity. Meanwhile, the DCSN PIL/IL ionogel also exhibited strong adhesive capacity due to the abundance of carboxyl and sulphonic acid groups. The outstanding electromechanical properties make the DCSN PIL/IL ionogel a perfect candidate for strain sensors to monitor diverse human body activities, such as the movement of the thumb knuckle and handwriting. Interestingly, the DCSN PIL/IL ionogel also displayed high responsiveness to humidity. Therefore, it is believed that this DCSN PIL/IL ionogel offers a broad prospect in flexible strain-humidity bimodal sensors.

Graphical abstract: Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2021
Accepted
16 Nov 2021
First published
16 Nov 2021

Soft Matter, 2021,17, 10918-10925

Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor

F. Xie, X. Gao, Y. Yu, F. Lu and L. Zheng, Soft Matter, 2021, 17, 10918 DOI: 10.1039/D1SM01453F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements