Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants
Abstract
Environmental pollution has been a known threat to our world due to the rapid urbanization, changing lifestyle of people, and modern industrialization. Therefore, there is an urgent need to develop novel sensing approaches having promising performance with high reliability and sensitivity for the precise monitoring of various pollutants. Metal–organic frameworks (MOFs) have been intensively investigated by many researchers as electrode modifiers for electrochemical sensing due to their excellent properties and efficiency. Diverse MOF-based electrochemical sensing systems are applied for environmental analysis for the sensitive, rapid and cost-effective determination of various analytes because of their unique structures, and properties, including the tunable pore size, high surface area, high catalytic activity, and high density of active sites. The aim of this review article is to evaluate the application of MOFs in the electrochemical sensing of environmental pollutants including heavy metal ions, pesticides, phenolic compounds, nitroaromatic compounds, antibiotics, nitrite, and hydrazine. Current limitations and future directions for the application of MOF-based electrochemical sensors for the detection of environmental pollutants are discussed.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles