Issue 10, 2021

Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells

Abstract

In this work, we designed a novel nanocomposite proton-exchange membrane (PEM) based on sulfonated poly(ether ether ketone) (SPEEK) and tantalum disulfide functionalized with terminal sulfonate groups (S-TaS2). The PEMs are prepared through a solution-casting method and exploited in direct methanol fuel cells (DMFCs). Two-dimensional S-TaS2 nanoflakes were prepared as a functional additive to produce the novel nanocomposite membrane for DMFCs due to their potential as a fuel barrier and an excellent proton conductor. To optimize the degree of sulfonation (DS) of SPEEK and the weight percentage (wt%) of S-TaS2 nanoflakes in PEMs, we used the central composite design of the response surface method. The optimum PEM was obtained for SPEEK DS of 1.9% and a weight fraction (wt%) of S-TaS2 nanoflakes of 70.2%. The optimized membrane shows a water uptake of 45.72%, a membrane swelling of 9.64%, a proton conductivity of 96.24 mS cm−1, a methanol permeability of 2.66 × 10−7 cm2 s−1, and a selectivity of 36.18 × 104 S s cm−3. Moreover, SPEEK/S-TaS2 membranes show superior thermal and chemical stabilities compared to those of pristine SPEEK. The DMFC fabricated with the SPEEK/S-TaS2 membrane has reached the maximum power densities of 64.55 mW cm−2 and 161.18 mW cm−2 at 30 °C and 80 °C, respectively, which are ∼78% higher than the values obtained with the pristine SPEEK membrane. Our results demonstrate that SPEEK/S-TaS2 membranes have a great potential for DMFC applications.

Graphical abstract: Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2020
Accepted
08 Jan 2021
First published
19 Jan 2021

J. Mater. Chem. A, 2021,9, 6368-6381

Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells

H. Beydaghi, L. Najafi, S. Bellani, A. Bagheri, B. Martín-García, P. Salarizadeh, K. Hooshyari, S. Naderizadeh, M. Serri, L. Pasquale, B. Wu, R. Oropesa-Nuñez, Z. Sofer, V. Pellegrini and F. Bonaccorso, J. Mater. Chem. A, 2021, 9, 6368 DOI: 10.1039/D0TA11137F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements