Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review
Abstract
Lithium metal, which exhibits the highest theoretical capacity and lowest redox potential relative to other materials, is considered to be the ultimate anode material for next-generation rechargeable batteries with energy density exceeding those of current Li-ion batteries. Recent studies have attempted to fabricate Li-metal-based batteries with higher energy densities by adopting an anodeless configuration that uses cathode materials as the exclusive Li-ion source with a zero-excess Li anode. However, growth of Li dendrites with a large surface area results in severe side reactions and in the formation of dead Li, causing rapid capacity fading and posing safety hazards. In this review, we summarize the current issues surrounding Li anodes along with strategies to improve the reversibility of Li deposition/stripping by controlling the deposition on a heterogeneous current collector for an anodeless configuration in cells with both liquid and solid electrolytes. These strategies include designing electrolytes, engineering the artificial solid electrolyte interphase, and employing 3D hosts.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles