Issue 36, 2021

Amorphization driven Na-alloying in SixGe1−x alloy nanowires for Na-ion batteries

Abstract

Here we report the use of 1D SixGe1−x (x = 0.25, 0.5, 0.75) alloy nanowires (NWs) as anode materials for Na-ion batteries (NIBs). The strategy involves the synthesis of crystalline SixGe1−x NWs via the solution–liquid–solid (SLS) mechanism, followed by amorphization to activate the material for Na-ion cycling within a NIB. This study demonstrates the successful activation of SixGe1−x amorphous NW alloys, with a-Si0.5Ge0.5 delivering 250 mA h g−1 as compared to a-Ge NWs delivering only 107 mA h g−1 after 100 cycles. Also, amorphization proved to be a critical step, since crystalline NWs failed to activate in NIBs. However, Si NWs performed poorly during Na-ion cycling even after amorphization, and this behavior was explained by poor comparative Na-ion diffusivity. Further investigations on the impact of the relative content of Ge within the amorphized SixGe1−x NWs, Na-ion diffusivity and electrode degradation during cycling were also performed. Notably, the incorporation of Ge in the a-SixGe1−x alloy boosted Na ion diffusivity in the amorphized alloy, resulting in improved cycling performance and rate capability as compared to parent a-Si and a-Ge NWs.

Graphical abstract: Amorphization driven Na-alloying in SixGe1−x alloy nanowires for Na-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2021
Accepted
06 Aug 2021
First published
06 Aug 2021

J. Mater. Chem. A, 2021,9, 20626-20634

Amorphization driven Na-alloying in SixGe1−x alloy nanowires for Na-ion batteries

S. Abdul Ahad, S. Kilian, M. Zubair, V. A. Lebedev, K. McNamara, K. M. Ryan, T. Kennedy and H. Geaney, J. Mater. Chem. A, 2021, 9, 20626 DOI: 10.1039/D1TA03741B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements