Issue 47, 2021

A high-throughput, solvent free method for dispersing metal atoms directly onto supports

Abstract

Atomically-dispersed metal catalysts (ADMCs) on surfaces have demonstrated high activity and selectivity in many catalytic reactions. However, dispersing and stabilising individual atoms in support materials in an atom/energy-efficient scalable way still presents a significant challenge. Currently, the synthesis of ADMCs involves many steps and further filtration procedures, creating a substantial hurdle to their production at industrial scale. In this work, we develop a new pathway for producing ADMCs in which Pt atoms are stabilised in the nitrogen-interstices of a graphitic carbon nitride (g-C3N4) framework using scalable, solvent-free, one-pot magnetron sputtering deposition. Our approach has the highest reported rate of ADMC production of 4.8 mg h−1 and generates no chemical waste. Deposition of only 0.5 weight percent of Pt onto g-C3N4 led to improved hydrogen production by factor of ca. 3333 ± 450 when compared to bare g-C3N4. PL analysis showed that the deposition of Pt atoms onto g-C3N4 suppressed the charge carrier recombination from the photogenerated electron–hole pairs of Pt/g-C3N4 thereby enhance hydrogen evolution. Scanning transmission electron microscope imaging before and after the hydrogen evolution reaction revealed that the Pt atoms stabilised in g-C3N4 have a high stability, with no agglomeration observed. Herein, it is shown that this scalable and clean approach can produce effective ADMCs with no further synthetic steps required, and that they can be readily used for catalytic reactions.

Graphical abstract: A high-throughput, solvent free method for dispersing metal atoms directly onto supports

Supplementary files

Article information

Article type
Communication
Submitted
27 Sep 2021
Accepted
17 Nov 2021
First published
22 Nov 2021
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2021,9, 26676-26679

A high-throughput, solvent free method for dispersing metal atoms directly onto supports

E. C. Kohlrausch, H. A. Centurion, R. W. Lodge, X. Luo, T. Slater, M. J. L. Santos, S. Ling, V. R. Mastelaro, M. J. Cliffe, R. V. Goncalves and J. Alves Fernandes, J. Mater. Chem. A, 2021, 9, 26676 DOI: 10.1039/D1TA08372D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements