Issue 4, 2021

Recent advances in nanomaterials for colorimetric cancer detection

Abstract

The early diagnosis of cancer can significantly improve patient survival rates. Colorimetric methods for real-time naked-eye detection have aroused growing interest owing to their low cost, simplicity, and practicability. With the rapid development of nanotechnology, compared with conventional diagnostic methods, nanomaterials with unique physical and chemical properties were applied to improve selectivity and sensitivity in colorimetric detection of cancer biomarkers, such as MUC1 aptamer conjugated PtAuNPs to specifically recognize MUC1 proteins on the cancer cell surfaces, etching of silver nanoprisms to detect prostate-specific antigen, and aggregation or dispersion of AuNPs to sense prostate cancer antigen gene 3 or glutathione, by which the limit of detection (LOD) could approach values down to a few cancer cells per mL, several fg per mL proteins, several ng of nucleic acids, or even tens of nM of organic molecules. Herein, we review the recent progress achieved in developing colorimetric nanosensors for cancer diagnosis, particularly providing an overview of the sensing principles, target biomarkers, advanced nanomaterials employed in the fabrication of sensing platforms, and strategies for improving signal sensitivity and specificity. Finally, we sum up the nanomaterial-based colorimetric cancer detection as well as existing challenges that should be resolved to extend their clinical application.

Graphical abstract: Recent advances in nanomaterials for colorimetric cancer detection

Article information

Article type
Review Article
Submitted
07 Sep 2020
Accepted
07 Dec 2020
First published
10 Dec 2020

J. Mater. Chem. B, 2021,9, 921-938

Recent advances in nanomaterials for colorimetric cancer detection

H. Wang, T. Wu, M. Li and Y. Tao, J. Mater. Chem. B, 2021, 9, 921 DOI: 10.1039/D0TB02163F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements