Issue 31, 2021

Computational electromagnetics in plasmonic nanostructures

Abstract

Plasmonic nanostructures have emerging applications in solar cells, photodynamic therapies, surface-enhanced Raman scattering detection, and photocatalysis due to the excitation of localized surface plasmons. The exciting electric field resulting from the collective oscillation of free electrons is highly dependent on the dielectric medium, shape, size, composition, and configuration of plasmonic nanostructures. From an engineering perspective, one can tune the optimal properties in the desired applications of geometrical parameters such as the shape, size, and nanoparticles’ configuration. Such optimization should be performed analytically (with exact solutions) or numerically (with specific approximations). Despite the accuracy of the analytical approaches (such as Mie theory), they have mainly been limited to arbitrary and simple geometries, i.e. spheres. This review revisited the theory of mostly implemented numerical approaches for simulating the optical response of plasmonic nanostructures. This paper discusses the finite difference time domain (FDTD), finite element method (FEM), discrete dipole approximation (DDA), and boundary element method (BEM) from both theoretical and practical points of view. The most recent applications of numerical simulations in different fields are presented and discussed. This comprehensive review can be promisingly considered as a guide for the researchers.

Graphical abstract: Computational electromagnetics in plasmonic nanostructures

Article information

Article type
Review Article
Submitted
15 Apr 2021
Accepted
06 Jul 2021
First published
15 Jul 2021

J. Mater. Chem. C, 2021,9, 9791-9819

Computational electromagnetics in plasmonic nanostructures

A. Amirjani and S. K. Sadrnezhaad, J. Mater. Chem. C, 2021, 9, 9791 DOI: 10.1039/D1TC01742J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements