Issue 36, 2021

Boosting charge and thermal transport – role of insulators in stable and efficient n-type polymer transistors

Abstract

Conjugated polymers are promising materials for flexible electronics. However, some prominent challenges remain and limit further commercialization. Among these issues, n-type polymers are known to be prone to electron trappings, which may lead to heat localization, unsustainable transport and ultimately device failure. In this contribution, three n-type polymers with representative electron-transporting moieties, double B←N bridged bipyridine (BNBP), naphthalene-diimide (NDI), and perylene-diimide (PDI), are selected and intentionally blended with a small amount of insulating polymer polystyrene (PS). In an organic field-effect transistor (OFET) structure, the blended semiconductors are shown to possess enhanced electron mobilities and device durability. The origin of the improved performance is investigated. Despite the thermally and electrically insulating properties of bulk PS, the blend films show improved heat transfer and electronic properties as revealed by scanning photothermal deflection and time-resolved photoluminescence. The counter-intuitive outcome is rationalized by a microstructure model in which PS blends inhomogeneously with the semiconductors. The added PS tends to mix with the amorphous phase, passivates phonons and charge trappings, and offers more efficient phonon and electron transport pathways. This work provides mechanistic insights into clinical device performance enhancement for semiconductor/insulator blends.

Graphical abstract: Boosting charge and thermal transport – role of insulators in stable and efficient n-type polymer transistors

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2021
Accepted
25 Jul 2021
First published
26 Jul 2021

J. Mater. Chem. C, 2021,9, 12281-12290

Boosting charge and thermal transport – role of insulators in stable and efficient n-type polymer transistors

Z. Zhang, J. K. W. Ho, C. Zhang, H. Yin, Z. Wen, G. Cai, R. Zhao, R. Shi, X. Lu, J. Liu, X. Hao, C. Cheng and S. K. So, J. Mater. Chem. C, 2021, 9, 12281 DOI: 10.1039/D1TC02346B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements