A bright chemiluminescence conjugated polymer–mesoporous silica nanoprobe for imaging of colonic tumors in vivo†
Abstract
Hypochlorite acid (ClO−) is one of the major reactive oxygen species (ROS) in colon cancer, providing an effective target for colonic tumor in vivo imaging. For detection of ClO− and tumor imaging, poly[(9,9-di(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PFV-co-MEHPV, namely CP1) was encapsulated in mesoporous silica nanoparticles (MSNs) that were pre-modified with polyphenylenevinylene (PPV) via in situ polymerization to construct bright PPV@MSN-CP1 nanoparticles. The synthesized nanoparticles were size-stable and not cytotoxic as confirmed by FE-TEM, FE-SEM, and MTT assay. Hypochlorite oxidizes the vinylidene bond of CP1 through π2–π2 cycloaddition to form PPV-dioxetane intermediates to generate photons. The CL quantum yield of PPV@MSN-CP1 was 16.7 times higher than that of Pluronic F-127 wrapped CP1. CL nanoparticles PPV@MSN-CP1 have good selectivity for hypochlorite detection among biological oxidants (mainly ROS). The linear range and the LOD of PPV@MSN@CP1 for ClO− detection are 4–90 and 1.02 μM, respectively. Subsequently, we further coated PPV@MSN@CP1 with folic acid for tumor targeting by phospholipid wrapping. PPV@MSN-CP1@FA was successfully applied for in vivo imaging of endogenously produced ClO− of tumor tissue in living animals.
- This article is part of the themed collection: Analyst HOT Articles 2022