Issue 15, 2022

Study on a photoacoustic spectroscopy trichloromethane gas detection method based on an arched photoacoustic cavity

Abstract

As an important component in photoacoustic spectroscopy gas detection systems, the performance of the photoacoustic cavity directly affects the sensitivity and resolution of the system. Based on a study of photoacoustic cavity performance, a new type of arched photoacoustic cavity is proposed. Finite element simulation software is used for modeling. By comparing the influences of the position and radius of the central sphere, the length and radius of the resonant cavity, and the radius of the buffer chamber on the performance of the photoacoustic cavity, the optimal structural size of the arched photoacoustic cavity is determined. Compared to a traditional cylindrical photoacoustic cavity with the same size, and considering the thermal viscous acoustic loss, a thermal-acoustic coupling multiphysical field simulation of the two models is carried out. The acoustic pressure signal of the arched photoacoustic cavity is 6 times that of the cylindrical photoacoustic cavity, the resonant frequency increases by 300 Hz, and the quality factor is 2.6 times that of the cylindrical photoacoustic cavity. The performance of the arched photoacoustic cavity is significantly improved. A photoacoustic spectroscopy system for the detection of chloroform gas (CHCl3) is built based on an arched photoacoustic cavity. Detection experiments are carried out with different concentrations of chloroform. At room temperature (25 °C) and atmospheric pressure, the linear coefficient R2 is 0.9975, and the detection sensitivity is 0.28 ppm. The system has great practical value for the detection of chloroform gas in industrial and agricultural applications.

Graphical abstract: Study on a photoacoustic spectroscopy trichloromethane gas detection method based on an arched photoacoustic cavity

Article information

Article type
Paper
Submitted
07 Dec 2021
Accepted
14 Mar 2022
First published
28 Mar 2022

Anal. Methods, 2022,14, 1507-1514

Study on a photoacoustic spectroscopy trichloromethane gas detection method based on an arched photoacoustic cavity

N. Zhao, D. Zhao, L. Ma and B. Wang, Anal. Methods, 2022, 14, 1507 DOI: 10.1039/D1AY02072B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements