The recognition of aristolochic acid I based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters
Abstract
Aristolochic acid I (AAI) is one of the nephrotoxic derivatives present in genera Aristolochia and Asarum. Although some detection strategies for monitoring AAI have been reported, the application of these methods is limited because they involve tedious preparation and require professional operation. In this work, bovine serum albumin (BSA) has been introduced as a reducing agent and stabilizing agent to synthesize gold nanoclusters with strong red fluorescence for the rapid and effective detection of AAI. Under excitation at 328 nm, the fluorescence intensity at the maximum emission wavelength of the bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) decreased with the addition of AAI, and the degree of quenching showed a linear relationship with the concentration of AAI from 0.1–12.8 μg mL−1. The obtained BSA-AuNCs were stable, and quenching in the presence of AAI could be achieved within 10 seconds. Here, we have focused on the application of these gold nanoclusters as an optical sensing material for AAI in rat urine samples, including a discussion on the detection mechanism. The detection result of the fluorescent probe was consistent with that of the HPLC method. In view of this reality, the reported protein-AuNCs sensing platform can serve as a convenient detection strategy in toxicological analyses.