Relative capability demonstration of luminescent Al-MOFs for ideal detection of nitroaromatic explosives
Abstract
Here, we have synthesised three luminescent Al MOFs i.e., Al-NTP, Al-FDA, and Al-TDA, using common metal ions (AlCl3·6H2O) with different carboxylic acid organic linkers (5-nitroisophthalic acid, 2,5-furan dicarboxylic acid, and 2,5-thiophenedicarboxylic acid) in a semi-aqueous medium. The structural analysis of Al-MOFs has been confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and absorption spectroscopy. Afterward, the optical properties of all three Al-MOFs were confirmed using photoluminescence spectroscopy and demonstrated for the detection of nitroaromatic explosives. We have observed host–guest interaction through a quenching mechanism. Among the three synthesised Al-MOFs, Al-NTP MOF exhibit 0.014 ppm lowest limit of detection in chloroform at room temperature. Our comparative study results reveal that the selection of the organic linker and solvent plays a critical role in MOF based sensing applications.