A thermo-sensitive and injectable hydrogel derived from a decellularized amniotic membrane to prevent intrauterine adhesion by accelerating endometrium regeneration†
Abstract
Objective To investigate the effect of the injectable hydrogel generated from a decellularized amniotic membrane (dAM)-gel on preventing the development of an intrauterine adhesion (IUA) on a rat model. Methods The dAM-gel was developed from an amniotic membrane (AM) by a process of decellularization, lyophilization, and enzyme digestion. Histological analysis, residual component determination, electronic microscopy and turbidimetric gelation kinetics analysis were performed to characterize the dAM-gel. The proliferation and migration of endometrial cells on the dAM-gel coated surface was examined. IUA was surgically created in rats and received dAM-gel injection immediately after wound creation. Gene profiles of epithelial cells cultured on the dAM-gel coated surface were evaluated by RNA-sequencing. Results The collagen content was retained in the dAM-gel, while the GAG content decreased significantly compared with fresh AM (fAM). Gelation of the gel was temperature-sensitive and showed a matrix concentration-dependent manner. Transplantation of the dAM-gel significantly reduced fibrosis of IUA with a recovered uterine cavity, regenerated endometrium and increased microvascular density, along with elevated pregnancy rate compared with endometrium damage groups. Migration of epithelial cells was greatly promoted by the dAM-gel in a surgically created uterine wound model. By comparing the RNA-sequence data of epithelial cells that were cultured on dAM-gel coated and non-coated surfaces, respectively, distinct gene profiles relative to the cellular migration, adhesion and angiogenesis and involved signaling pathway were identified. Conclusions The injectable dAM-gel developed from AM offers a promising option for preventing endometrial fibrosis by promotion of the re-epithelialization of the damaged endometrium.