Issue 8, 2022

Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta

Abstract

Various hydrogels derived from the xenogeneic extracellular matrix (ECM) have been utilised to promote the repair and reconstruction of numerous tissues; however, there are few studies on hydrogels derived from allogeneic specimens. Human placenta derived hydrogels have been used in the therapy of ischaemic myocardium; however, their physicochemical properties and effects on cellular behaviour remain elusive. As the human placenta retains pro-angiogenic growth factors, it is hypothesized that the placenta hydrogels possess the potential to improve angiogenesis. In this study, a soluble decellularized human placenta matrix generated using a modified method could be stored in a powder form and could be used to form a hydrogel in vitro. Effective decellularization was evaluated by analysing the DNA content and histology images. The placenta hydrogel exhibited a fibrous porous morphology and was injectable. Fourier transform infrared (FTIR) spectroscopy revealed that the placenta hydrogel contained both collagen and sulfated glycosaminoglycans (GAGs). In addition, immunofluorescence imaging and enzyme-linked immunosorbent assay (ELISA) showed that the placenta hydrogel retained pro-angiogenic growth factors, including VEGF and bFGF, and transforming growth factor-β1 (TGF-β1). Further in vitro and in vivo analyses confirmed that the placenta hydrogel exerted better pro-angiogenic effects than a collagen type I hydrogel. Histological data also showed that the placenta hydrogels did not elicit a grave inflammatory response. In conclusion, the results suggest that placenta hydrogels may be deemed an attractive scaffold for regenerative medicine applications, especially in promoting vessel formation.

Graphical abstract: Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta

Article information

Article type
Paper
Submitted
09 Dec 2021
Accepted
22 Jan 2022
First published
22 Mar 2022

Biomater. Sci., 2022,10, 2062-2075

Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta

N. Chao, J. Li, W. Ding, T. Qin, Y. Zhang, H. Xie and J. Luo, Biomater. Sci., 2022, 10, 2062 DOI: 10.1039/D1BM01891D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements