Issue 20, 2022

Silver loaded biodegradable carboxymethyl chitin films with long-lasting antibacterial activity for infected wound healing

Abstract

Bacteria-related infections are one of the main causes of human skin infections, which are associated with the delay of wound healing and secondary complications. In this work, a series of novel biodegradable films based on thermosensitive carboxymethyl chitin were prepared without using any crosslinkers. All the carboxymethyl chitin films had good flexibility, high transparency, and appropriate water absorption capacity, and could provide a moist environment for wound healing. The silver ions (Ag+) were incorporated on the LTCF-5 film, which had the best mechanical strength (56.39 MPa in the dry state and 0.66 MPa in the wet state) among the carboxymethyl chitin films and was higher than those of the reported biodegradable dressings and commercially available dressings. Compared with the commercial hydrofiber dressing with silver (AQUACEL®), the composite film could provide slow and sustained release of Ag+ with good strength and biodegradability, and displayed excellent long-lasting antibacterial activity in vitro against both S. aureus and E. coli without obvious cytotoxicity, which still possessed good antibacterial activity with almost 100% bacteriostatic rates after soaking in phosphate buffered saline for 7 days. More importantly, the Ag+ loaded carboxymethyl chitin film could promote infected cutaneous wound healing in a S. aureus infected full-thickness cutaneous defect in vivo model because of its long-lasting antibacterial activity, good biocompatibility, exudate absorption and ability to maintain a moist environment. Thus Ag+ loaded carboxymethyl chitin films are excellent candidates for infected wound healing.

Graphical abstract: Silver loaded biodegradable carboxymethyl chitin films with long-lasting antibacterial activity for infected wound healing

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2022
Accepted
15 Aug 2022
First published
15 Aug 2022

Biomater. Sci., 2022,10, 5900-5911

Silver loaded biodegradable carboxymethyl chitin films with long-lasting antibacterial activity for infected wound healing

S. Lv and X. Jiang, Biomater. Sci., 2022, 10, 5900 DOI: 10.1039/D2BM01046A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements