Chemical proteomic analysis of bile acid-protein targets in Enterococcus faecium†
Abstract
Bile acids are important gut microbiota metabolites that regulate both host and microbial functions. To identify the direct protein targets of bile acids in Enterococcus, we synthesized and validated the activity of a lithocholic acid (LCA) photoaffinity reporter, x-alk-LCA-3. Chemical proteomics of x-alk-LCA-3 in E. faecium Com15 reveals many candidate LCA-interacting proteins, which are involved in cell well synthesis, transcriptional regulation and metabolism. To validate the utility of bile acid photoaffinity labeling, we characterized a putative bile salt hydrolase (BSH) crosslinked by x-alk-LCA-3, and demonstrated that this BSH was effective in converting taurolithocholic acid (TLCA) to LCA in E. faecium and in vitro. Chemical proteomics should afford new opportunities to characterize bile acid-protein targets and mechanisms of action in the future.
- This article is part of the themed collection: Chemical Proteomics