Issue 69, 2022

Palladium-catalyzed native α-amino acid derivative-directed arylation/oxidation of benzylic C–H bonds: synthesis of 5-aryl-1,4-benzodiazepin-2-ones

Abstract

A Pd-catalyzed, native α-amino acid derivative-directed benzylic C–H bond arylation/oxidation with aryl iodides was developed. The natural amino acid auxiliary could serve as a desired building block for formation of 5-aryl-1,4-benzodiazepin-2-ones after removal of the trifluoroacetyl protecting group. The bifunctional reaction probably proceeded through a sequential benzylic arylation/oxidation process.

Graphical abstract: Palladium-catalyzed native α-amino acid derivative-directed arylation/oxidation of benzylic C–H bonds: synthesis of 5-aryl-1,4-benzodiazepin-2-ones

Supplementary files

Article information

Article type
Communication
Submitted
10 Jun 2022
Accepted
28 Jul 2022
First published
08 Aug 2022

Chem. Commun., 2022,58, 9638-9641

Palladium-catalyzed native α-amino acid derivative-directed arylation/oxidation of benzylic C–H bonds: synthesis of 5-aryl-1,4-benzodiazepin-2-ones

F. Jiang, M. Xu, W. Bei, K. Cheng and L. Huang, Chem. Commun., 2022, 58, 9638 DOI: 10.1039/D2CC03266J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements