Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

A functional Na3V2(PO4)2O2F (NVPOF) cathode with a multi-component (Na3V(PO4)2, V2O3, and reduced graphene oxide) surface coating is developed via a facile hydrothermal reaction followed by calcination, and exhibits high reversible capability, and long-term cycling stability even at a low temperature of −40 °C. It is demonstrated that the multi-component-coating layer can significantly accelerate the e/Na+ transport and reduce the interfacial resistance at low temperature. This work provides a novel strategy to boost the kinetics and stability of electrode materials for low-temperature sodium ion batteries.

Graphical abstract: Multi-component surface engineering of Na3V2(PO4)2O2F for low-temperature (−40 °C) sodium-ion batteries

Page: ^ Top