Issue 11, 2022

Charge density wave in a SnSe2 layer on and the effect of surface hydrogenation

Abstract

We have carried out an investigation using density functional theory (DFT) of the atomic and electronic structures of SnSe2 layers on the Image ID:d1cp05569k-t3.gif surface and hydrogenation of this surface. We have considered a (2 × 2) SnSe2 superstructure oriented along the diagonal direction of the Image ID:d1cp05569k-t4.gif surface periodicity, for which scanning tunneling microscopy (STM) measurements have recently been reported. In the band structure calculations, while the s–p character surface state originating from each SnSe2 layer is determined, there is an additional half-filled surface state in the fundamental band gap region due to the Sn adatom. At the [M with combining macron] point in the Brillouin zone, a charge density wave (CDW) partial gap opening of ∼0.1 eV occurs between these surface states close to the Fermi level. Here, the CDW gap is caused by two reasons; (i) Fermi surface nesting, due to the inequivalent electron pockets at the [M with combining macron] point, and (ii) the out of plane weak electron–phonon coupling regime due to the mean-field (MF) theory (2Δ/kBTMF = 3.52). Upon hydrogen adsorption on the Image ID:d1cp05569k-t5.gif surface, we have obtained a β-phase SnSe layer and SeH2 molecule with a bond angle of ∼90°. The hydrogenated surface pushes the surface state associated with the SnSe2 layer into the Si projected bulk band continuum. After SeH2 desorption, the work function drops from 5.20 eV to 4.39 eV.

Graphical abstract: Charge density wave in a SnSe2 layer on and the effect of surface hydrogenation

Article information

Article type
Paper
Submitted
06 Dec 2021
Accepted
12 Feb 2022
First published
15 Feb 2022

Phys. Chem. Chem. Phys., 2022,24, 6820-6827

Charge density wave in a SnSe2 layer on Image ID:d1cp05569k-t1.gif and the effect of surface hydrogenation

C. Tayran and M. Çakmak, Phys. Chem. Chem. Phys., 2022, 24, 6820 DOI: 10.1039/D1CP05569K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements