Abstract
Aromaticity is a fundamental concept in chemistry, underpinning the properties and reactivity of many organic compounds and materials. The ability to easily and accurately discern aromatic behavior is key to leveraging it as a design element, yet most aromaticity metrics struggle to combine accurate quantitative evaluation, intuitive interpretability, and user-friendliness. We introduce a new method, NICS2BC, which uses simple and inexpensive NICS calculations to generate information-rich and easily-interpreted bond-current graphs. We test the quantitative and qualitative characterizations afforded by NICS2BC for a selection of molecules of varying structural and electronic complexity, to demonstrate its accuracy and ease of analysis. Moreover, we show that NICS2BC successfully identifies ring-current patterns in molecules known to be difficult cases to interpret with NICS and enables deeper understanding of local aromaticity trends, demonstrating that our method adds additional insight.