Issue 17, 2022

Reproducing the invention of a named reaction: zero-shot prediction of unseen chemical reactions

Abstract

While state-of-art models can predict reactions through the transfer learning of thousands of samples with the same reaction types as those of the reactions to predict, how to prepare such models to predict “unseen” reactions remains an unanswered question. We aimed to study the Transformer model's ability to predict “unseen” reactions through “zero-shot reaction prediction (ZSRP)”, a concept derived from zero-shot learning and zero-shot translation. We reproduced the human invention of the Chan–Lam coupling reaction where the inventor was inspired by the Suzuki reaction when improving Barton's bismuth arylation reaction. After being fine-tuned with samples from these two “existing” reactions, the USPTO-trained Transformer could predict “unseen” Chan–Lam coupling reactions with 55.7% top-1 accuracy. Our model could also mimic the later stage of the history of this reaction, where the initial case of this reaction was generalized to more reactants and reagents via “one-shot/few-shot reaction prediction (OSRP/FSRP)” approaches.

Graphical abstract: Reproducing the invention of a named reaction: zero-shot prediction of unseen chemical reactions

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2021
Accepted
04 Apr 2022
First published
06 Apr 2022

Phys. Chem. Chem. Phys., 2022,24, 10280-10291

Reproducing the invention of a named reaction: zero-shot prediction of unseen chemical reactions

A. Su, X. Wang, L. Wang, C. Zhang, Y. Wu, X. Wu, Q. Zhao and H. Duan, Phys. Chem. Chem. Phys., 2022, 24, 10280 DOI: 10.1039/D1CP05878A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements