Quantum simulations of neutral water clusters and singly-charged water cluster anions
Abstract
We report a computational study of the structural and energetic properties of water clusters and singly-charged water cluster anions containing from 20 to 573 water molecules. We have used both a classical and a quantum description of the molecular degrees of freedom. Water intra and inter-molecular interactions have been modelled through the SPC/F model, while the water-excess electron interaction has been described via the well-known Turi–Borgis potential. We find that in general the quantum effects of the water degrees of freedom are small, but they do influence the cluster-size at which the excess electron stabilises inside the cluster, which occurs at smaller cluster sizes when quantum effects are taken into consideration.