Issue 36, 2022

Molecular insights into the oligomerization dynamics and conformations of amyloidogenic and non-amyloidogenic amylin from discrete molecular dynamics simulations

Abstract

The amyloid aggregation of human islet amyloid polypeptide (hIAPP) is associated with pancreatic β-cell death in type 2 diabetes. The S20G substitution of hIAPP (hIAPP(S20G)), found in Japanese and Chinese people, is more amyloidogenic and cytotoxic than wild-type hIAPP. Rat amylin (rIAPP) does not have aggregation propensity or cytotoxicity. Mounting evidence suggests that soluble low-molecular-weight amyloid oligomers formed during early aggregation are more cytotoxic than mature fibrils. The self-assembly dynamics and oligomeric conformations remain unknown because the oligomers are heterogeneous and transient. The molecular mechanism of sequence-variation rendering dramatically different aggregation propensity and cytotoxicity is also elusive. Here, we investigate the oligomerization dynamics and conformations of amyloidogenic hIAPP, hIAPP(S20G), and non-amyloidogenic rIAPP using atomistic discrete molecular dynamics (DMD) simulations. Our simulation results demonstrated that all three monomeric amylin peptides mainly adopted an unstructured formation with partial dynamical helices near the N-terminus. Relatively transient β-hairpins were more abundant in hIAPP and hIAPP(S20G) than in rIAPP. The S20G-substituting mutant of hIAPP altered the turn region of the β-hairpin motif, resulting in more hydrophobic residue-pairwise contacts within the β-hairpin. Oligomerization dynamic investigation revealed that all three peptides spontaneously accumulated into helix-populated oligomers. The conformational conversion to form β-sheet-rich oligomers was only observed in hIAPP and hIAPP(S20G). The population of high-β-sheet-content oligomers was enhanced by S20G substitution. Interestingly, both hIAPP and hIAPP(S20G) could form β-barrel formations, and the β-barrel propensity of hIAPP(S20G) was three times larger than that of hIAPP. No β-sheet-rich or β-barrel formations were observed in rIAPP. Our direct observation of the correlation between β-barrel oligomer formation and cytotoxicity suggests that β-barrels might play a critically important role in the cytotoxicity of amyloidosis.

Graphical abstract: Molecular insights into the oligomerization dynamics and conformations of amyloidogenic and non-amyloidogenic amylin from discrete molecular dynamics simulations

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2022
Accepted
30 Aug 2022
First published
31 Aug 2022

Phys. Chem. Chem. Phys., 2022,24, 21773-21785

Author version available

Molecular insights into the oligomerization dynamics and conformations of amyloidogenic and non-amyloidogenic amylin from discrete molecular dynamics simulations

Y. Wang, Y. Liu, Y. Zhang, G. Wei, F. Ding and Y. Sun, Phys. Chem. Chem. Phys., 2022, 24, 21773 DOI: 10.1039/D2CP02851D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements