Issue 1, 2022

ChemSpaX: exploration of chemical space by automated functionalization of molecular scaffold

Abstract

Exploration of the local chemical space of molecular scaffolds by post-functionalization (PF) is a promising route to discover novel molecules with desired structure and function. PF with rationally chosen substituents based on known electronic and steric properties is a commonly used experimental and computational strategy in screening, design and optimization of catalytic scaffolds. Automated generation of reasonably accurate geometric representations of post-functionalized molecular scaffolds is highly desirable for data-driven applications. However, automated PF of transition metal (TM) complexes remains challenging. In this work a Python-based workflow, ChemSpaX, that is aimed at automating the PF of a given molecular scaffold with special emphasis on TM complexes, is introduced. In three representative applications of ChemSpaX by comparing with DFT and DFT-B calculations, we show that the generated structures have a reasonable quality for use in computational screening applications. Furthermore, we show that ChemSpaX generated geometries can be used in machine learning applications to accurately predict DFT computed HOMO–LUMO gaps for transition metal complexes. ChemSpaX is open-source and aims to bolster and democratize the efforts of the scientific community towards data-driven chemical discovery.

Graphical abstract: ChemSpaX: exploration of chemical space by automated functionalization of molecular scaffold

Supplementary files

Article information

Article type
Paper
Submitted
02 Oct 2021
Accepted
23 Dec 2021
First published
06 Jan 2022
This article is Open Access
Creative Commons BY license

Digital Discovery, 2022,1, 8-25

ChemSpaX: exploration of chemical space by automated functionalization of molecular scaffold

A. V. Kalikadien, E. A. Pidko and V. Sinha, Digital Discovery, 2022, 1, 8 DOI: 10.1039/D1DD00017A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements