Issue 13, 2022

Porous MoS2 nanosheets for the fast decomposition of energetic compounds

Abstract

The energy release performance of energetic compounds like 3-nitro-1,2,4-trizole-5-one (NTO) and 5,5′-bistetrazole-1,1′-diolate (TKX-50) are indispensable in propellent formulations. However, thermal decomposition behavior is impeded by unfavorable catalysts. Presently, ultrathin porous MoS2 nanosheets (pMoS2) are considered as high-performance catalysts for NTO and TKX-50 decomposition. The pMoS2 in 5 wt% content could decrease the decomposition temperature of NTO and TKX-50 by 13.5 °C and 37.1 °C, respectively. Furthermore, the exothermic heat-release for pMoS2@NTO and pMoS2@TKX-50 were increased almost by a factor of two. The porous structure combined with large specific area of pMoS2 could mostly trigger the catalytic effect towards energetic compound decomposition. Additionally, the as-obtained MoS2 endowed advances in safety performance of NTO and TKX-50, with remarkably reduced impact and friction sensitivity. The as-proposed strategy may stimulate a different perspective towards the fast decomposition of energetic materials in propellants.

Graphical abstract: Porous MoS2 nanosheets for the fast decomposition of energetic compounds

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2022
Accepted
03 Mar 2022
First published
08 Mar 2022

Dalton Trans., 2022,51, 5278-5284

Porous MoS2 nanosheets for the fast decomposition of energetic compounds

X. Zhao, J. Zhang, F. Gong, B. Huang and Z. Yang, Dalton Trans., 2022, 51, 5278 DOI: 10.1039/D2DT00035K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements