Issue 21, 2022

Polymer modified magnetic-luminescent nanocomposites for combined optical imaging and magnetic fluid hyperthermia in cancer therapy: analysis of Mn2+ doping for enhanced heating effect, hemocompatibility and biocompatibility

Abstract

Magnetic MnxFe3−xO4 nanoparticles and polymer coated magnetic-luminescent MnxFe3−xO4@(Y,Dy/Eu)VO4 nanocomposites were prepared to study their comparative heat generation efficiency and biocompatibilities. Cubic crystalline phases were obtained for the nanoparticles and cubic–tetragonal biphasic phases were observed for the nanocomposites. The successful doping of Mn2+ was also confirmed by inductively coupled plasma optical emission spectroscopy. The compositions and the surface modification chemistry were confirmed by infrared spectroscopy. The formation of near-spherical and cubic/cuboid nanoparticles was observed from electron microscopy. Comparative analysis of induction heating efficiencies and magnetization values of the synthesized materials was performed for the samples. The samples showed an efficient heating effect under the influence of alternating magnetic field strengths – 3.05 × 106 kA m−1 s−1 and 4.58 × 106 kA m−1 s−1. A higher Mn2+ content was found to possess higher magnetization and perform better in heat generation. The nanocomposites give brilliant color emission on excitation using ultraviolet wavelengths – 300 and 315 nm. Their hydrodynamic radii and zeta potential values indicate good stability of the dispersions. Hemocompatibility studies were carried out to ascertain the effect on red blood cells. The materials were also found to exhibit excellent biocompatibility towards HeLa cell lines. This article will provide a new insight into the use of MnxFe3−xO4 based nanocomposites for magnetic fluid hyperthermia in cancer therapy.

Graphical abstract: Polymer modified magnetic-luminescent nanocomposites for combined optical imaging and magnetic fluid hyperthermia in cancer therapy: analysis of Mn2+ doping for enhanced heating effect, hemocompatibility and biocompatibility

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2022
Accepted
06 May 2022
First published
24 May 2022

Dalton Trans., 2022,51, 8510-8524

Polymer modified magnetic-luminescent nanocomposites for combined optical imaging and magnetic fluid hyperthermia in cancer therapy: analysis of Mn2+ doping for enhanced heating effect, hemocompatibility and biocompatibility

G. S. Ningombam, B. Srinivasan, A. H. Chidananda, S. N. Kalkura, Y. Sharma and N. R. Singh, Dalton Trans., 2022, 51, 8510 DOI: 10.1039/D2DT00308B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements