Issue 14, 2022

Unraveling the coordination approach of Eu(iii) in cyphos nitrate ionic liquid – a comprehensive luminescence spectroscopy study

Abstract

In consideration of the mounting attention drawn by the ionic liquid cyphos 101 (trihexyl(tetradecyl)phosphonium chloride: [P66614][Cl]) in the recovery of rare earth metals and other valuable species from their waste matrices, an effort was made using luminescence spectroscopy to study the detailed liquid–liquid extraction and coordination behavior of Eu(III) using the nitrate form of cyphos 101 (cyphos nitrate: [P66614][NO3]) in its undiluted form. Eu(III) complexation with [P66614][NO3] at each stage of the extraction process was investigated using the luminescence spectroscopy technique. Various extraction parameters such as aqueous phase acidity, concentrations of ionic liquid extractant and initial Eu(III) ion, extraction time, experimental temperature, etc. were tuned to discover their impact on the complexation process. The uniqueness of the nitrate ion in ionic liquid was explored by comparing the emission patterns of Eu(III) with [P66614]-based ionic liquids containing different anions. In addition, the affirmative effect of increasing the initial aqueous phase nitrate ion concentration in the coordination process was underscored by comparing the emission patterns in the chloride medium. The luminescence results of the Eu(III)– [P66614][NO3] complex were compared both in unirradiated and irradiated ionic liquid phases. Asymmetry ratio (AR) and lifetime data under each experimental condition were ascertained, thereby revealing the precise nature of complex formation and strength of the metal–solvate species (metal–ligand complex formation) formed. The stripping of the loaded Eu(III) from the [P66614][NO3] phase was established and the results were presented in the form of the emission patterns of Eu(III) in both phases.

Graphical abstract: Unraveling the coordination approach of Eu(iii) in cyphos nitrate ionic liquid – a comprehensive luminescence spectroscopy study

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2022
Accepted
04 Mar 2022
First published
07 Mar 2022

Dalton Trans., 2022,51, 5534-5545

Unraveling the coordination approach of Eu(III) in cyphos nitrate ionic liquid – a comprehensive luminescence spectroscopy study

A. Rout, S. Kumar and N. Ramanathan, Dalton Trans., 2022, 51, 5534 DOI: 10.1039/D2DT00422D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements