Issue 24, 2022

A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material

Abstract

All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N2 from the N5 group as revealed by the MD simulations.

Graphical abstract: A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2022
Accepted
20 May 2022
First published
23 May 2022

Dalton Trans., 2022,51, 9369-9376

Author version available

A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material

L. Zhao, S. Liu, Y. Chen, W. Yi, D. Khodagholian, F. Gu, E. Kelson, Y. Zheng, B. Liu and M. Miao, Dalton Trans., 2022, 51, 9369 DOI: 10.1039/D2DT00820C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements