Opening magnetic hysteresis via improving the planarity of equatorial coordination by hydrogen bonding†
Abstract
Through a mixed-ligand strategy, the structural change from a discrete dinuclear DyIII cluster to a one-dimensional polymeric chain was achieved, maintaining the two magnetic entities with the same {Dy(dppbO2)2(H2O)5} (dppbO2 = 1,4-butylenebis(diphenylphosphine oxide)) core structure. Since the hydrogen bonding between the equatorial coordinated water molecules and the guests/solvents/anions is distinct, the local geometry and the equatorial planarity of the first coordination sphere of the central DyIII ion become slightly different caused by the second coordination sphere. As a result, the dinuclear compound shows typical butterfly-shaped hysteresis loops, while it significantly opens at zero magnetic field up to 11 K for the 1D polymer, which is unprecedented in coordination polymers. Our experimental observations and theoretical analysis indicate that the hydrogen bonding leads to the fine-tuning of certain bond lengths and angles of the coordination environment, as well as the crystal field to a certain extent, revealing that the second coordination sphere affects the first coordination sphere by hydrogen bonding.