Issue 45, 2022

Electrocatalyst decomposition pathways: torsional strain in a second sphere proton relay shuts off CO2RR in a Re(2,2′-bipyridyl)(CO)3X type electrocatalyst

Abstract

Group 7 tris(carbonyl) bipyridine complexes have been well explored as important CO2 reduction reaction (CO2RR) electrocatalysts and now represent an excellent platform for catalyst design. Recent synthetic focus has been on the installation of proton sources/relays within the primary/secondary coordination sphere. These proton sources have been implicated in directly assisting catalysis by acting as shuttles for proton transfer or through the stabilization of transition states through hydrogen bonding. Herein, we report a new ligand system for CO2RR electrocatalysts, which features an aryl amine appended to a quinoline–bipyridine core. While the geometrical arrangement of the aryl amine seems amenable to assisting CO2RR electrocatalysis, we find, through spectroelectrochemical and chemical reduction studies, the torsional strain imposed on the ligand induces a structural reorganization through loss of a hydrogen atom radical. This new complex, which utilizes the anionic nitrogen as a donor atom, and other Re complexes with the same coordination motif, have been found to be entirely inactive for CO2RR. Subsequent reduction yields hydrogenation of the complex through dearomatization of the quinoline backbone concomitant with decomposition products. While the electrocatalytic capability of the reported complexes is moderate, the study represents an important investigation into the deactivation of CO2RR electrocatalysts as a consequence of typical proton shuttle moieties and guides future ligand design by highlighting an oft overlooked structural parameter.

Graphical abstract: Electrocatalyst decomposition pathways: torsional strain in a second sphere proton relay shuts off CO2RR in a Re(2,2′-bipyridyl)(CO)3X type electrocatalyst

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2022
Accepted
29 Oct 2022
First published
31 Oct 2022

Dalton Trans., 2022,51, 17381-17390

Electrocatalyst decomposition pathways: torsional strain in a second sphere proton relay shuts off CO2RR in a Re(2,2′-bipyridyl)(CO)3X type electrocatalyst

Z. S. Dubrawski, C. Y. Chang, C. R. Carr, B. S. Gelfand and W. E. Piers, Dalton Trans., 2022, 51, 17381 DOI: 10.1039/D2DT02876J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements