Issue 6, 2022

The Ir–OOOO–Ir transition state and the mechanism of the oxygen evolution reaction on IrO2(110)

Abstract

Carefully assessing the energetics along the pathway of the oxygen evolution reaction (OER), our computational study reveals that the “classical” OER mechanism on the (110) surface of iridium dioxide (IrO2) must be reconsidered. We find that the OER follows a bi-nuclear mechanism with adjacent top surface oxygen atoms as fixed adsorption sites, whereas the iridium atoms underneath play an indirect role and maintain their saturated 6-fold oxygen coordination at all stages of the reaction. The oxygen molecule is formed, via an Ir–OOOO–Ir transition state, by association of the outer oxygen atoms of two adjacent Ir–OO surface entities, leaving two intact Ir–O entities at the surface behind. This is drastically different from the commonly considered mono-nuclear mechanism where the O2 molecule evolves by splitting of the Ir–O bond in an Ir–OO entity. We regard the rather weak reducibility of crystalline IrO2 as the reason for favoring the novel pathway, which allows the Ir–O bonds to remain stable and explains the outstanding stability of IrO2 under OER conditions. The establishment of surface oxygen atoms as fixed electrocatalytically active sites on a transition-metal oxide represents a paradigm shift for the understanding of water oxidation electrocatalysis, and it reconciles the theoretical understanding of the OER mechanism on iridium oxide with recently reported experimental results from operando X-ray spectroscopy. The novel mechanism provides an efficient OER pathway on a weakly reducible oxide, defining a new strategy towards the design of advanced OER catalysts with combined activity and stability.

Graphical abstract: The Ir–OOOO–Ir transition state and the mechanism of the oxygen evolution reaction on IrO2(110)

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2022
Accepted
04 May 2022
First published
04 May 2022
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2022,15, 2519-2528

The Ir–OOOO–Ir transition state and the mechanism of the oxygen evolution reaction on IrO2(110)

T. Binninger and M. Doublet, Energy Environ. Sci., 2022, 15, 2519 DOI: 10.1039/D2EE00158F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements