Issue 2, 2022

Effects of biofouling on the uptake of perfluorinated alkyl acids by organic-diffusive gradients in thin films passive samplers

Abstract

While organic-diffusive gradients in thin films (o-DGT) passive samplers have been used to assess organic contaminants in water, the effects of biofouling on accurate analyte quantification by o-DGT are poorly understood. We evaluated the effects of biofouling on the uptake of six common perfluoroalkyl substances (PFAS) using a previously developed polyacrylamide-WAX (weak anion exchange) o-DGT without a filter membrane. Linear uptake (R2 > 0.91) over 21 days was observed in fouled samplers. The measured sampling rates (Rs) and accumulated masses of PFAS in pre-fouled o-DGT were significantly lower (p < 0.05, 20–39% relative error) than in control-fouled samplers. However, compared to clean o-DGT (no biofouling), the Rs of most PFAS in control-fouled samplers (i.e., those with clean diffusive and binding gels initially) were not affected by biofouling. Under flowing (∼5.8 cm s−1) and static conditions, the measured diffusive boundary layer (DBL) thicknesses for clean o-DGT were 0.016 and 0.082 cm, respectively, whereas the effective in situ biofilm thicknesses for fouled o-DGT were 0.018 and 0.14 cm, respectively. These results suggest that biofilm growth does not have significant effects on target PFAS sampling by o-DGT under typical flowing conditions (≥2 cm s−1). However, rapid surface growth of biofilm on o-DGT deployed in quiescent waters over long periods of time may exacerbate the adverse effects of biofilms, necessitating the estimation of biofilm thickness in situ. This study provides new insights for evaluating the capability of o-DGT samplers when biofilm growth can be significant.

Graphical abstract: Effects of biofouling on the uptake of perfluorinated alkyl acids by organic-diffusive gradients in thin films passive samplers

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2021
Accepted
20 Dec 2021
First published
20 Dec 2021

Environ. Sci.: Processes Impacts, 2022,24, 242-251

Effects of biofouling on the uptake of perfluorinated alkyl acids by organic-diffusive gradients in thin films passive samplers

P. Wang, J. K. Challis, Z. He, C. S. Wong and E. Y. Zeng, Environ. Sci.: Processes Impacts, 2022, 24, 242 DOI: 10.1039/D1EM00436K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements