Issue 3, 2022

Biosolids leachate variability, stabilization surrogates, and optical metric selection

Abstract

Sludge and biosolids organic matter (OM) are increasingly assessed via optical measurements of associated leachates – especially at pilot and bench scales. Limited work has systematically characterized optical and size exclusion chromatography (SEC) based properties of leachable OM from full-scale solid stabilization processes, however. In this study, leachable OM of biosolids from nine full-scale facilities with lime treatment (LT), anaerobic digestion, or aerobic digestion (AeD) (n = 3 facilities per type), was sampled for three sampling dates per facility and multiple extractions per biosolid (n = 54 leachates). Leachates were characterized by high-performance size exclusion chromatography (HP-SEC-UV), ultraviolet (UV)-visible absorbance spectra, and excitation emission matrix (EEM) spectroscopies, pH, and leachable DOC/kg solid. AnD and AeD biosolids-DOM consistently exhibited higher molecular weight DOM (1360 Da) and fluorescence emissions >380 nm after digestion. This suggested higher molecular-weight, heterogeneous OM is released into soluble phases after biological treatment. Fluorescent emission peaks >450 nm were present only in AnD-biosolids leachates (n = 27), providing a consistent signature for anaerobically digested material. Given the agreement of these trends with pilot scale studies, strategies detecting fluorescence emissions >380 nm are proposed stabilization surrogates at full-scale facilities. Prior to this study, there was limited literature consensus for which optical metrics best quantified sludge and biosolids-DOM transformations, however. Critical analysis of ten optical metrics indicated that not all pre-established metrics captured unique spectral differences in biosolids-DOM spectra, as optical metrics were first developed for aquatic DOM. Absorption (E2 : E3, SUVA254, SR), and fluorescence metrics (HIX, BIX, and fluorescence regional integration (FRI)) were less adaptable to biosolids-DOM spectra. Principal component analysis (PCA) confirmed that targeted peak ratio assessment (i.e. B : T or A : C peak maxima analysis) best differentiated intrinsic fluorescent DOM changes by treatment. Three independent parallel factor analysis (PARAFAC) models for major treatment types of LT, AnD, and AeD biosolids-DOM also validated treatment differences captured by peak picking surrogates. PARAFAC models described new components in the OpenFluor spectral database. Overall, targeted fluorescence peak picking represents a surrogate strategy to monitor leachate quality changes across full-scale treatment trains. These findings may advance optical approaches for process engineering and advanced stabilization research.

Graphical abstract: Biosolids leachate variability, stabilization surrogates, and optical metric selection

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2021
Accepted
17 Jan 2022
First published
10 Feb 2022

Environ. Sci.: Water Res. Technol., 2022,8, 657-670

Biosolids leachate variability, stabilization surrogates, and optical metric selection

S. J. Fischer, M. Gonsior, J. Chorover, L. C. Powers, A. Hamilton, M. Ramirez and A. Torrents, Environ. Sci.: Water Res. Technol., 2022, 8, 657 DOI: 10.1039/D1EW00320H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements