Issue 4, 2022

Bovine α-lactalbumin-derived peptides attenuate TNF-α-induced insulin resistance and inflammation in 3T3-L1 adipocytes through inhibiting JNK and NF-κB signaling

Abstract

Bioactive peptides in bovine α-lactalbumin were isolated and identified, and the effects and mechanisms of peptide KILDK on insulin resistance in 3T3-L1 adipocytes were investigated. Mature 3T3-L1 adipocytes were stimulated with TNF-α to induce insulin resistance. Bovine α-lactalbumin hydrolysates (α-LAH) were subjected to stimulated gastrointestinal digestion and Caco-2 absorption, and GD-α-LAH and CA-α-LAH were obtained. Our results demonstrated that α-LAH, GD-α-LAH, and CA-α-LAH increased glucose uptake, enhanced Akt phosphorylation (Ser473), and decreased IRS-1 phosphorylation (Ser307) in insulin resistant 3T3-L1 adipocytes. Gel filtration chromatography and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) were used to separate and identify bioactive peptides. The identified peptide KILDK attenuated insulin resistance in 3T3-L1 adipocytes, which was attributed to the suppression of JNK phosphorylation (Thr183/Tyr185). Moreover, KILDK downregulated pro-inflammatory genes through blocking NF-κB signaling. Our findings suggested that bovine α-LAH might be a potential ingredient against insulin resistance.

Graphical abstract: Bovine α-lactalbumin-derived peptides attenuate TNF-α-induced insulin resistance and inflammation in 3T3-L1 adipocytes through inhibiting JNK and NF-κB signaling

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2021
Accepted
17 Jan 2022
First published
10 Feb 2022

Food Funct., 2022,13, 2323-2335

Bovine α-lactalbumin-derived peptides attenuate TNF-α-induced insulin resistance and inflammation in 3T3-L1 adipocytes through inhibiting JNK and NF-κB signaling

J. Gao, K. Guo, M. Du and X. Mao, Food Funct., 2022, 13, 2323 DOI: 10.1039/D1FO01217G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements