Microfluidic spinning of fucoxanthin-loaded nanofibers for enhancing antioxidation and clarification of fruit juice†
Abstract
Fruit juice is one of the most popular drinks, which requires strict processing conditions to ensure its quality, especially to prevent enzymatic browning and turbidity loss. In this work, a new strategy for the preparation of composite nanofibers for juice clarification and anti-browning control was proposed. The strategy used microfluidic spinning to combine Fucoxanthin (Fx), hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and polyvinyl pyrrolidone (PVP) to prepare Fx/HP-γ-CD-PVP (PCF) nanofibers, which not only reflected the excellent antioxidant properties of cyclodextrin-wrapped Fx, but also achieved a more optimized juice clarification agent dosage. Molecular docking technique was used to prove that the stable inclusion complex of Fx and HP-γ-CD could be formed by hydrogen bonding when the molar ratio of Fx to HP-γ-CD was 1 : 2, and the binding energy was as low as −10.23 kcal mol−1. SEM, XRD, FT-IR and TGA were used to characterize the structure of the composite nanofibers, which showed that the thermal stability and water solubility of the embedded Fx were improved. Further studies showed that the apple juice with PCF nanofibers containing inclusion complexes of Fx and HP-γ-CD at a molar ratio of 1 : 2 (PCF 1 : 2) could significantly improve the DPPH and ABTS radical scavenging activity, and could significantly protect the cell membrane integrity of RAW264.7 cells against H2O2 oxidative damage. Finally, the effects of PCF nanofibers on the quality of fresh juice were studied, including clarification experiment and sensory evaluation. The results showed that the dosage of PVP in PCF 1 : 2 was only about 4% of the conventional dosage, and the browning index of fresh juice was significantly reduced with the best clarification. The available data provided in this study would provide a promising safety strategy for the food processing of fresh juice and the extension of its storage life.