The novel anti-neuroinflammatory functional food CCL01, a mixture of Cuscuta seed extracts and Lactobacillus paracasei NK112†
Abstract
Neuroinflammation, which occurs due to microglia, is related to the pathogenesis of neurodegenerative disorders. Recently, the development of functional foods that down-regulate over-activated microglial cells to prevent the progression of neurodegenerative disorders has been proposed, since over-activated microglia induce a chronic source of neurotoxic factors and reduce neuronal survival. Thus, the anti-neuroinflammatory effects of a functional food mixture (CCL01) including Cuscuta seeds and Lactobacillus paracasei NK112 on lipopolysaccharide (LPS)-induced experimental models were investigated. In LPS-induced in vitro models, the expression levels of inflammatory mediators (e.g., inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2) and pro-inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin (IL)-1β, and IL-6) were decreased upon CCL01 treatment. CCL01 showed an anti-neuroinflammatory effect in LPS-induced microglial cells via the inhibition of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and the activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In the LPS-treated in vivo mouse models, the increased expression of ionized calcium binding adaptor molecule 1 (Iba-1), which indicates microglial activity, was markedly decreased upon treatment with CCL01 (50 and 200 mg kg−1) in the hippocampus and cortex areas of the mouse brains in comparison with the LPS-injected group. In addition, the groups to which CCL01 was administered had significantly decreased plasma levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in the LPS-injected mouse models. Our data suggest that CCL01 may be a potential anti-neuroinflammatory agent that can prevent microglia overactivation, and it could be useful for developing functional foods.