Carvacrol preserves antioxidant status and attenuates kidney fibrosis via modulation of TGF-β1/Smad signaling and inflammation†
Abstract
Chronic kidney disease (CKD) with diverse aetiologies is emerging as a challenging kidney disorder associated with inflammation and interstitial fibrosis. Carvacrol (CVL) is a bioactive monoterpenoid found abundantly in oregano, thyme, and bergamot, having diverse pharmacological benefits. However, the effect of CVL against fibrotic changes in the kidneys is poorly defined. In the current study, a robust mouse model of renal fibrosis induced through unilateral ureteral obstruction (UUO) is used to investigate the anti-fibrotic activity of CVL. The mice were treated with two different oral doses of CVL (25 mg kg−1 and 50 mg kg−1 body weight) for 14 consecutive days. The UUO induction resulted in impaired renal function, severe histological damage, and collagen deposition in the obstructed kidney. Our findings revealed profound activation of transforming growth factor-β1 (TGF-β1) and NF-κB (p65) signaling along with the downregulation of antioxidant proteins, nuclear factor-erythroid factor 2-related factor 2 (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD) in the obstructed kidney. CVL administration markedly recovered antioxidant proteins and kidney histological changes. In addition, CVL blunted the NF-κB (p65) phosphorylation and reduced the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and cyclooxygenase 2 (COX-2) compared to the UUO control group. CVL also alleviated the increased fibrotic protein levels of TGF-β1, pSmad2/3, collagen I, collagen III, fibronectin, and myofibroblast activation and epithelial–mesenchymal transition (EMT) markers, including alpha-smooth muscle actin (α-SMA), E-cadherin, and vimentin in the kidneys. Findings from in vitro study also confirmed that CVL inhibits the EMT process in TGF-β1 stimulated renal tubular epithelial cells (NRK 52E cells). Collectively, our findings indicate that CVL administration attenuates kidney fibrosis by targeting oxidative stress and inflammation.