Issue 20, 2022

Capsaicin regulates dyslipidemia by altering the composition of bile acids in germ-free mice

Abstract

The improvement of lipid metabolism by capsaicin (CAP) has been extensively studied, mostly with respect to the vanilloid type 1 (TRPV1) ion channel and intestinal flora. In this study, a model was established in germ-free mice by using resiniferatoxin (RTX) to ablate TRPV1 ion channels. Bile acid composition, blood parameters, and colonic transcriptome analyses revealed that CAP could improve dyslipidemia caused by high-fat diet even in the absence of TRPV1 ion channels and intestinal flora. CAP fed to germ mice decreased the concentrations of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting blood glucose and fasting insulin, increased the concentration of high-density lipoprotein (HDL-C), and decreased the levels of plasma endotoxin and pro-inflammatory factor interleukin 6 (IL-6). Furthermore, CAP could affect both classical and alternative pathways of cholesterol conversion by changing the composition of bile acids, reducing the concentrations of glycocholic acid (GCA), ursodeoxycholic acid (UDCA) and glycochenodeoxycholic acid (GCDCA). First, changing the composition of bile acids inhibited the expression of colon Fgf15. CAP promoted the expression of Cyp7a1 (Cytochrome p450, family 7, subfamily a, and polypeptide 1) in the liver, and thus reduced TC and TG levels. In addition, it could change the composition of bile acids and increase the expression of Cyp7b1 (Cytochrome p450, family 7, subfamily b, and polypeptide 1) in the colon, increase Cyp7b1 protein in the liver and thus inhibit fat accumulation. In conclusion, CAP could alter the composition of bile acids and promote the conversion of cholesterol to bile acids, thereby improving lipid metabolism abnormalities caused by a high-fat diet.

Graphical abstract: Capsaicin regulates dyslipidemia by altering the composition of bile acids in germ-free mice

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2022
Accepted
21 Sep 2022
First published
21 Sep 2022

Food Funct., 2022,13, 10665-10679

Capsaicin regulates dyslipidemia by altering the composition of bile acids in germ-free mice

T. Gong, C. Li, S. Li, X. Zhang, Z. He, X. Jiang, Q. He, R. Huang, Y. Wang and X. Liu, Food Funct., 2022, 13, 10665 DOI: 10.1039/D2FO02209E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements