Issue 20, 2022

A self-contained acoustofluidic platform for biomarker detection

Abstract

Self-contained microfluidic platforms with on-chip integration of flow control units, microreactors, (bio)sensors, etc. are ideal systems for point-of-care (POC) testing. However, current approaches such as micropumps and microvalves, increase the cost and the control system, and it is rather difficult to integrate into a single chip. Herein, we demonstrated a versatile acoustofluidic platform actuated by a Lamb wave resonator (LWR) array, in which pumping, mixing, fluidic switching, and particle trapping are all achieved on a single chip. The high-speed microscale acoustic streaming triggered by the LWR in the confined microchannel can be utilized to realize a flow resistor and switch. Variable unidirectional pumping was realized by regulating the relative position of the LWR in various custom-designed microfluidic structures and adoption of different geometric parameters for the microchannel. In addition, to realize quantitative biomarker detection, the on-chip flow resistor, micropump, micromixer and particle trapper were also integrated with a CMOS photo sensor and electronic driver circuit, resulting in an automated handheld microfluidic system with no moving parts. Finally, the acoustofluidic platform was tested for prostate-specific antigen (PSA) sensing, which demonstrates the biocompatibility and applied potency of this proposed self-contained system in POC biomedical applications.

Graphical abstract: A self-contained acoustofluidic platform for biomarker detection

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2022
Accepted
01 Sep 2022
First published
02 Sep 2022

Lab Chip, 2022,22, 3817-3826

A self-contained acoustofluidic platform for biomarker detection

X. Chen, C. Zhang, B. Liu, Y. Chang, W. Pang and X. Duan, Lab Chip, 2022, 22, 3817 DOI: 10.1039/D2LC00541G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements