Antibody-functionalized aluminum oxide-coated particles targeting neutrophil receptors in a multifrequency microfluidic impedance cytometer†
Abstract
Personalized diagnostics of infectious diseases require monitoring disease progression due to their ever-changing physiological conditions and the multi-faceted organ system mechanisms involved in disease pathogenesis. In such instances, the recommended clinical strategies involve multiplexing data collection from critical biomarkers related to a patient's conditions along with longitudinal frequent patient monitoring. Numerous detection technologies exist both in research and commercial settings to monitor these conditions, however, they fail to provide biomarker multiplexing ability with design and data processing simplicity. For a recently conceived multiplexing biomarker modality, this work demonstrates the use of electrically sensitive microparticles targeting and identifying membrane receptors on leukocytes using a single detection source, with a high potential for multiplexing greater than any existing impedance-based single-detection scheme. Here, polystyrene microparticles are coated with varying thicknesses of metal oxides, which generate quantifiable impedance shifts when exposed to multifrequency electric fields depending on the metal oxide thickness. Using multifrequency impedance cytometry, these particles can be measured and differentiated rapidly across one coplanar electrode scheme. After surface-functionalizing particles with antibodies targeting CD11b and CD66b receptors, the particles are combined with isolated neutrophils to measure receptor expression. A combination of data analysis techniques including multivariate analysis, supervised machine learning, and unsupervised machine learning was able to accurately differentiate samples with up to 91% accuracy. This proof-of-concept study demonstrates the potential for these oxide-coated particles for enumerating specific leukocytes enabling multiplexing. Further, additional coating thicknesses or different metal oxide materials can enable a compendium of multiplexing targeting resource to be used to develop a high-multiplexing sensor for targeting membrane receptor expression.