Issue 21, 2022

Simultaneous quantification of blood rheology and oxygen saturation to evaluate affinity-modifying therapies in sickle cell disease

Abstract

Sickle cell blood demonstrates oxygen-dependent flow behavior as a result of HbS polymerization during hypoxia, and these rheological changes provide a biophysical metric that can be used to quantify the pathological behavior of the blood. Relating these rheological changes directly to hemoglobin oxygen saturation would improve our understanding of SCD pathogenesis and the potential effects of therapeutic drugs. Towards this end, we have developed a microfluidic platform capable of spectrophotometric quantification of Hb-O2 saturation and simultaneous evaluation of the accompanying rheological changes in SCD blood flow. We demonstrated the ability to measure changes in Hb-O2 affinity and a restoration of oxygen-independent blood flow behavior after incubation with voxelotor, an oxygen affinity modifying drug approved for use in SCD. We also identified regimes in Hb-O2 saturation where the effects of HbS polymerization begin to take effect in contributing to pathological flow behavior, independent of voxelotor treatment. In contrast, incubation with voxelotor recovered oxygen-dependent blood flow over a range of PO2, providing a framework for understanding voxelotor's therapeutic effect in lowering the PO2 at which the requisite Hb-O2 saturation is reached to observe pathological blood flow. These results help explain the mechanistic effects of voxelotor and show the potential of this platform to identify affinity-modifying compounds and evaluate their therapeutic effect on blood flow.

Graphical abstract: Simultaneous quantification of blood rheology and oxygen saturation to evaluate affinity-modifying therapies in sickle cell disease

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2022
Accepted
01 Sep 2022
First published
06 Sep 2022

Lab Chip, 2022,22, 4141-4150

Author version available

Simultaneous quantification of blood rheology and oxygen saturation to evaluate affinity-modifying therapies in sickle cell disease

S. Hansen and D. K. Wood, Lab Chip, 2022, 22, 4141 DOI: 10.1039/D2LC00623E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements