Issue 3, 2022

Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy

Abstract

Liquid biopsy-based diagnosis in precision oncology exhibits significant advantages over the traditional tissue biopsies by offering dynamic assessment of tumour heterogeneity, minimally invasive procedures for frequent sampling, and cost-effective tests. Implementation of liquid biopsy-based diagnosis for precision oncology could be the key to provide a confident cancer screening with tailored risk assessment, patient stratification, and real-time monitoring of cancer therapies. To achieve precision oncology with liquid biopsy, the simultaneous analysis of multiple circulating tumour biomarkers is a powerful strategy to establish an accurate signature for each individual patient. Among various developed approaches for tumour biomarker detection, microfluidic devices integrated with surface enhanced Raman scattering (SERS) are emerging as one of the powerful techniques to support precision oncology based on its potential to provide multiplexing and high sensitivity. Particularly, the microfluidic devices provide miniaturised channels for parallel reactions and SERS has the extremely narrow spectra for intrinsic multiplexing. This mini review will focus on recently reported SERS microfluidic techniques, which are capable of simultaneous detection of multiple cancer biomarkers in liquid biopsy and have the promise to be integrated into precision oncology.

Graphical abstract: Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy

Article information

Article type
Review Article
Submitted
14 Sep 2021
Accepted
03 Jan 2022
First published
06 Jan 2022
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2022,3, 1459-1471

Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy

K. B. Shanmugasundaram, J. Li, A. I. Sina, A. Wuethrich and M. Trau, Mater. Adv., 2022, 3, 1459 DOI: 10.1039/D1MA00848J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements